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Addition theorems are derived for reduced Bessel functions rU+IkN(flr), where k N is a modified 
spherical Bessel function, and for functions r-NbN(flr) with b N being a spherical Bessel, Neumann, or 
Hankel function. Furthermore, addition theorems are derived for the logarithm, the Gaussian func- 
tion, and the function (rcos0) N, i.e. powers of the scalar product (e~- r). With the help of the addition 
theorem of reduced Bessel functions one obtains a one-center expansion of Slater-type s-orbitals, 
which can be compared with Barnett and Coulson's zeta function expansion. This yields a closed 
form expression of the zeta function. 

The given addition theorems for the functions considered, which in fact describe translations of 
these functions, are expansions in which the radial and angular dependencies are separated. The 
angular dependencies are expressed by spherical harmonics, as it is most appropriate for physical 
applications. For the derivations of the addition theorems use is made of the concept of generating 
functions for Gegenbauer polynomials. It turns out that the coefficients T~Nk of the one-center expansion 
of r N, which was given in the preceding paper, play a dominant role in all the expansions considered. 
Possible fields of applications of the theorems are scattering theory, the calculation of stationary 
states and other problems in molecular theory. 
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l . ~ o ~ e ~ n  

Difficulties encountered in evaluating quantum mechanical matrix elements 
can often be surmounted only by using expansions of the operators or orbitals 
which occur, provided such expansions exist. 

In the present article certain new expansion theorems are derived for reduced 
Bessel functions rN+lkN(flr) and for functions r-NjN(fir), where JN is a spherical 
and k N is a modified spherical Bessel function. Furthermore, expansion theorems 
are given for scalar Slater-type orbitals rNe -~r, for the Gaussian function 
exp[-(kr)2], for the logarithm log(kr), and for powers of (r-cos0) given by 
(ez" r) N. These functions are of great physical interest because they are contained 
in many different quantum mechanical operators and wave functions. They are 
also needed in a wide variety of physical problems as, for instance, the theory of 
interatomic interactions and scattering theory. 
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The expansion theorems presented have the form of addition theorems with 
explicitly given coefficients suitable for practical applications. In the expansions 
the angular dependencies are separated from the radial ones and expressed by 
surface spherical harmonics. These expansions in spherical harmonics represent 
translations of fields defined by the functions considered. 

The derivations and results given in the present article are based on the 
treatments given in the two preceding papers of this series [1, 2], hereafter referred 
to as I and II, respectively. 

2. Expansions of Gegenbauer Polynomials in Terms of Legendre Polynomials 

In the following some addition theorems will be discussed that can be 
expressed by expansions in spherical harmonics, but which originally are 
connected with expansions in Gegenbauer polynomials. 

The generating function for the Gegenbauer polynomials C~(0 with ( =  cos~o 
is given by the expansion of (r')- ~ according to 

(r2< + r2> - 2r < r > ~)- ,/2 = r ;* ~, C~/2 (O(r </r >)k, (2.1 a) 
k = 0  

r' = r - R,  r < = Min(r, R), r > = Max(r, R), (2. lb) 

which is a generalization of Eq. (I.3.16), because "~kr'l/g=Pk. In the present paper, 
the power 2 of the potential 1/r' may be restricted to integer values N. A comparison 
of Eq. (2.1) with Eq. (II.3.19) yields immediately 

k 

C~/2([) = ~(2) (21+ 1)Tt~NP,(0, (2.2) 
1=[0 ,1 ]  

if the summations over l and k in Eq. (II.3.19) are interchanged according to 
Eq. (II.3.7). Because of the orthogonality of the Legendre polynomials due to 

1 

d~Pk(~)P,( 0 = [(21+ 1)/2] - 16k, , , (2.3) 
- 1  

it holds that 

1 

d~Pz(OC~/2(O= 2Tz~ N . (2.4) 
- 1  

Hence, the coefficients of the expansion of Gegenbauer polynomials in terms of 
Legendre polynomials are represented by the T~ N. These coefficients are also 
given by Rainville I-3] in a different form. The degrees and the parity behavior of 
the polynomials Pz and C~/2 determine the limits of the indices k and I as discussed 
in Section 3 of II. 

The relation Eq. (2.1) is in fact a formula for the translation of the function r-  ~ 
which is represented by an expansion in terms of Gegenbauer polynomials. 
With the help of Eq. (2.2) this representation can be changed into one which is 
given by an expansion in a series of Legendre polynomials. 

For some functions different from (r')-a, which may also be called generating 
functions for the C~, there exist expansions in terms of Gegenbauer polynomials 
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with explicitly known coefficients. With the help of Eq. (2.2), these expansions can 
be transformed into series of functions of r< and r> multiplied with Legendre 
polynomials which contain the angular dependence, as is desirable for physical 
applications. The main advantage of an expansion in terms of Legendre poly- 
nomials is based on the fact that due to the addition theorem given in Eq. (I.3.19) 
the variables r< and r> are completely separated in each term of the series. This 
is actually a criterion for an addition theorem, as has been discussed in connection 
with Eq. (I.3.15). However, the so-called addition theorem of the Gegenbauer 
polynomials [4], which corresponds to Eq. (I.3.19), does not allow the separation 
of the variables r< and r> completely. Therefore, by transforming Gegenbauer 
polynomials to Legendre polynomials within a given expansion for a certain 
function, it is possible to derive real addition theorems as they are needed for 
applications. 

3. Translations of Reduced Bessel Functions 

Shavitt [5] emphasized the physical importance of the functions (flr)ZKz(flr), 
which he called reduced Bessel functions, where Kz defines the second solution 
of the modified Bessel differential equation [6, 7] and 2 > 0,/3 > 0. The parameter/~ 
should not be confused with the function/3~ defined by Eq. (II.3.6a). These reduced 
Bessel functions are regular at the origin and decrease exponentially as r~oe .  
For 2 = N + (1/2), N being a positive integer, they can be represented by modified 
spherical Bessel functions k N with x = (/3r) according to 

x N+ lku(x)=(2/rc)l/ZxU+(1/2)KN+(1/z)(X). (3.1) 

Putting XN+lkN(x)=kN+(1/2)(X), these functions can be represented by I-5, 8] 

u ( 2 N - q -  1)! --1 
kN-(1/2)(x)=e-Xq~=l (q--1)!(2N~_2q)!! x~ . (3.2) 

Because these functions are polynomials multiplied by exp( -  x), Shavitt discussed 
the possibility of using them as the radial part of a generalized type of orbital 
in atomic and molecular calculations. 

In the following a formula for the translation of reduced Bessel functions will 
be derived which may prove helpful for practical applications. 

Gegenbauer's addition theorem [9, 10] allows one to express the function 
(flr')VK_ v(~r') by an infinite series such that each term of the expansion essentially 
consists of a product I v + ,(fir <). K v + ,(/3r >) and a Gegenbauer polynomial depend- 
ing on ~ = cosco, whereby: 

r '=  Iv > - r < [= (r2< + r2> - 2r < r > cosco) 1/2 . (3.3) 

The function I v is the first solution of the modified Bessel equation [7]. Using 
Kv(x) = K_ v(x) and expanding the Gegenbauer polynomials in terms of Legendre 
polynomials according to Eq. (2.2), one arrives at a new expansion in which the 
angular variables are completely separated. The addition theorem for the reduced 
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Bessel functions has the form 

kN- (1/2)(fl r ) = 4re( -- 1)N[(2N -- 1) ! !] - l(/3r </3r >)N- ~1/2) 
l l+2N 

" ~ Z 2 (2) (2n-2N+l)Tt2,f f- lI ,-N+(1/a)(flr<) 
l=Om=-I n=l 

�9 K,_N+(1/2)(flr>)ytm*(r</r<)ytm(r>/r>). (3.4) 

4. Translations of Slater-Type s-Orbitals 

The addition theorem for reduced Bessel functions given by Eq. (3.4) is closely 
connected with the translation formula for Slater-type s-orbitals, which is usually 
written as 

(r')N-%-~,'=4rc ~, (r<r>)-l/2r (n. m* ~N,,,e, r, R ) Y  t (r</r<). Ytm(r>/r>), (4.1) 
l=O m = - I  

where the zeta-function ~N,t was introduced by Barnett and Coulson [11, 12]. 
It is possible to invert the relationship Eq. (3.2), yielding the result 

x N- l e -X= ~ ( -  1)N-PN[ 
p (2p - N) [(2N - 2p) ! ! kp_(1/2)(x) �9 (4.2a) 

The summation index p runs in steps of one from Min p to Max p = N with 

~N/2 for N even. 
Min p = [(N + 1)/2 for N odd.  (4.2b) 

This identity can be shown to hold by performing a complete induction with 
respect to N, using the well known recursion formula for Bessel functions [7], 
which for the reduced Bessel functions reads 

2 ~ 
X k v _ ( 1 / 2 ) ( x ) = k v + ( 3 / 2 ) ( x ) - ( 2 1 : -  1 )kv+(1 /2) (x  ) . (4.3) 

The addition theorem Eq. (3.4) can be applied to each term of the expansion 
Eq. (4.2a). If the result is compared with the expansion Eq. (4.1), one obtains the 
zeta function in closed form by the following finite series 

[ s , t ( f l ; r , R ) = f l - s ~ 2 )  ( - 1 ) N N ! ( 2 n - 2 p + I )  Tt2~-i 
p , ( 2 p - 1 ) ! ! ( 2 p - N ) ! ( 2 N - 2 p ) ! !  

�9 (fir <)"(flr > )"I, _ ,  + (1/2 )(fir < )K,  _,  + ~i/2 )(fir > ). (4.4) 

Again, the summation index p runs in steps of one from Min p defined by Eq. (4.2b) 
to Max p =  N, whereas the summation index n runs in steps of two between the 
limits l < n < l + 2p. 

Barnett and Coulson [11, 12] gave recurrence formulas for computing zeta 
functions of higher indices N and l, respectively, by starting from [o,i and ~N,0. 
Silverstone [13] showed that it is possible to construct the zeta function [u,~ by 
successive differentiation, which if done would lead to a less compact formula, 
containing products of I and K functions of different order. 
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5. Addition Theorems Involving Spherical Bessel Functions 

If Gegenbauer's addition theorem [9, 10] is applied to the function (kr')-~dv(kr'), 
each term of the expansion consists of a product Jv +,(kr <)J~ + ,(kr >) and a Gegen- 
bauer polynomial depending on ~=cosc~. The function d~(kr') is the Bessel 
function of the first kind [7]. If again Eq. (2.2) is used to expand the Gegenbauer 
polynomials in terms of Legendre polynomials, one obtains the following new 
expansion in spherical harmonics. 

For the spherical Bessel functions b/(x), which are of physical interest, the 
addition theorem is given by 

(fir ')- LbL(fir' ) = &r(2L -- 1)! !(fir <)-  L(fir > ) -  L 

�9 ~ ~<2) ~ ( 2 L + 2 n + l ) T t ,  za- l ja+,( f ir<)bL+,( f ir>) 
t = 0  n = l  m = - l  

�9 Yr '*(r</r<)Yl ' (r>/r>) .  (5.1) 

Here, b/(x) with real x stands for spherical Bessel, Neumann, or Hankel functions 
defined by Eqs. (5.2a)-(5.2d): 

j/(x) = (rc/2x)l/2 J/ + ~1/2)(x) , (5.2a) 

n/(x) = ( - 1 )' + 1 (TC/2X) I / z j  _ l -(1/2)(x), (5.2b) 

hl l)(x) =j/(x)  + inl(x) , (5.2c) 

hlZ)(x) = j r ( x ) - i n / ( x ) .  (5.2d) 

The modified spherical Bessel functions are defined by 

il(x) = i- / jr( ix) ,  (5.2e) 

k/(x) = - i- /hla)(ix) .  (5.2t) 

The modified spherical Bessel function i/should not be confused with the imaginary 
unit i. 

The addition theorem for (fir')-LkL(fir ') is obtained from Eq. (5.1) if b z is 
replaced by kz and JL+, is substituted by iL+ .. The addition theorem for 
(~r')-LiL(flr ') is obtained from Eq. (5.1) if bz is replaced by iz, whereas JL+, is 
replaced by (-1)"iL+ n. In this relationship r< and r> may be interchanged�9 

Except for the case L = 0  [14], these addition theorems do not seem to have 
been given before�9 

6. Addition Theorems for the Logarithm and the Gaussian Function 

The logarithm is the generating function for C O according to 

log(kr') = log(kr >) - (1/2) ~ C~ </r >)" (6.1) 

with C~ 1, whereas C ~  for k#0  [4, 15]. A comparison 
of the known expansion [163 of cos(ko) in terms of Pl(() with Eq. (2.2) for N = 0  
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yields 

T, ~ - - 2fl~?~ -3 l + k # O  (6.1a) 1 , k  - -  , , 

To~ ( - 1 ) ! ! = 1 ,  ( - 3 ) ! ! = - 1 .  (6.1b) 

With these coefficients, one obtains with the help of Eq. (2�9 the relationship 

log(kr,)~=log(kr>)~ (2/2 ) ~, ~(2) ~ (l_r 
l = 0  k = l  m = - l  

�9 47r Tl~ </r > )k Y["*(r </r <) Y~m(r >/r > ). (6.2) 

The Gaussian function is easy to handle in molecular integrals, mainly because 
the product of two Gaussians having different centers is itself a Gaussian centered 
between the original ones [ 17]. However, the translation of a Gaussian represented 
by an expansion in spherical harmonics is given by the following more complicated 
formula, which holds for any v which is a natural number or half an odd integer: 

l 

e-(k")~=r(v)e-(~r<)~-(k'>)~ ~ E(2) y,, 4rc(v+n) 
I = 0  n = l  m = - - l  

�9 Tl.,2~(k2r<r>)-~lv+,(2k2r<r>)ytm*(r</r<)Y["(r>/r>). (6.3) 

This relationship is obtained from Gegenbauer's 1-18] or Sonine's 1-19] expansion 
of z~e ~ in a series of the Neumann type by application of the formula Eq. (2.2). 
In Eq. (6.3), I,(z) is the modified Bessel function, and F(v) is the gamma function 
1-20]. Because the variables r< and r> are not separated completely in Eq. (6.3), 
this relation is not an exact addition theorem in the sense of Eq. (1.3.15). It has 
some flexibility, however, because v can be chosen as required for practical 
purposes. 

Because C~/Z= P~, Rayleigh's plane wave expansion is a special case of Gegen- 
bauer's plane wave expansion�9 In the same sense, the expansion Eq. (6.3) for 
v = 1/2 is a special case of the general expansion Eq. (6�9149 

7. Translations of Powers of the Scalar Product (ez" r) 

The function (ez �9 r) N, where e z is the unit vector coinciding with the z-axis, is 
not a scalar function but exhibits an angular dependence. In order to describe a 
translation of this function, one needs expansions of (e~-r') N, which are difficult 
to obtain due to the transformational behavior of non-scalar functions�9 Therefore, 
until now the expansions can be given only for translations along the z-axis and 
for certain regions in space�9 

Starting from an expansion of (R - rcosco) N in Gegenbauer polynomials [21], 
one obtains for N =  - 1 ,  - 2 ,  - 3 , . � 9  if r> coincides with the z-axis, the formula 

(r'cos0')N=( - 1)N(--2N--3)! ! [ ( - N -  1)!] -1 N r <  

�9 ~(2) (2/+ 1 ) ( 2 k - 2 N -  1)T~,Zk N+I 
l = 0  k = l  

" ~-N+k-  l(r>/r<)Pt(cosc~ �9 (7.1) 
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For powers N--1, 2, 3 .....  one obtains, if R coincides with the z-axis, the 
following expansion which holds for R < rcose): 

(r 'cosO')N=Ni[4(2N - 1)!!]-lr ~ ~ ~(2)'(2/+ 1) 
l=O k = l  

�9 ( 2 k - 2 N -  1)rz2~ + IP_N+ k_ l(--R/r)Pt(coso)).  (7�9 

The ~"~ are Legendre functions of the second kind [22]�9 Those of the first kind 
[23] obey P~(~)=P"-~-I(~). Equation (7�9 corresponds to case B, Eq. (7.2) cor- 
responds to case A as discussed in Section 3 of I. One case is missing for each 
formula�9 A generalization of the formulas to translations in arbitrary directions 
is not immediately possible because (e z �9 r) N does not transform under rotations 
like a spherical harmonic�9 These problems and the transformational behavior of 
non-scalar functions will be dealt with in a subsequent investigation�9 

8. Summary 

For application in physics it is of greatest advantage to have expansions in 
terms of spherical harmonics instead of other functions�9 Sometimes, expansions 
in Gegenbauer polynomials are known�9 With the help of Eq. (2.2), an expansion 
of a function in terms of Gegenbauer polynomials can be transformed into an 
expansion of the same function in a series of Legendre polynomials. If these are 
expressed by spherical harmonics, use can be made of orthogonality relations 
and other theorems established in the theory of angular momentum. Therefore, 
the relationship Eq. (2.2) is useful for the construction of expansions in spherical 
harmonics which are especially needed in the theory of molecular integrals and 
intermolecular interactions�9 

In the present paper translation formulas are derived for the following func- 
tions: The expansion theorem for reduced Bessel functions is given by Eq. (3�9 
whereas the addition theorem for the related functions r-LbL(flr) is given by 
Eq. (5.1)�9 The translation formula for scalar Slater-type orbitals r u. e -~r is given 
by Eqs. (4.1) and (4�9 The relationships Eqs. (6�9 (6�9 (7�9 and (7.2) 
represent the expansion theorems for the functions exp[-(kr)2], log(kr), and 
(ez" r) N, respectively�9 

These expansions, which can be used in many different problems, are particular- 
ly useful in quantum mechanical computations�9 Molecular calculations often 
require that an atomic orbital be expressed as an expansion in spherical harmonics 
about a center which is displaced from the orbital's origin�9 The relevant methods 
to solve this problem have been reported by LSwdin [24]. Naturally, the main 
interest was in the translation of Slater-type atomic orbitals which was elaborated 
by Coolidge [25], Landshoff [-26], LSwdin [24, 27], and Barnett and Coulson 
[11, 12], especially for scalar (s-type) functions�9 A related problem is the trans- 
lation of the functions r-abL(flr) and the translation of reduced Bessel functions, 
which, as was suggested by Shavitt [5], may be used as the radial part of a general- 
ized type of orbital�9 It turns out that the expansion theorems for these functions 
allow the derivation of the explicit form of Barnett-Coulson's zeta function, as 
given by Eq. (4.4)�9 
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Computational aspects arising with the translation of non-scalar Slater-type 
functions have been considered by Harris and Michels [28]. In view of the remain- 
ing difficulties with Slater-type atomic orbitals, use of Gaussian-type orbitals is 
frequently favored. Although molecular integrals over Gaussian-type orbitals are 
rather simple, the formula Eq. (6.3) shows that translations of scalar Gaussian 
functions result in complicated expressions, too. For the special case v = 1/2, this 
formula was already given by Sack [14], who also gave expansions in spherical 
harmonics of the logarithm and spherical Bessel functions of zero order: jo(flr), 
no(fir ) .... , which are special cases (L=0) of Eq. (5.1). These special addition 
theorems were rederived by Rafiqullah [29] with the help of a double Bessel 
transformation. 

As expansions in spherical harmonics are most appropriate for the treatment 
of three-dimensional problems, expansions in terms of cos(/co) may be useful for 
two-dimensional problems, co being the angle between r< and r>. Therefore, 
Ashour [30] derived expansions of the functions considered by Sack [14] in 
terms of cos(/co), applying Sack's method which was discussed in I. Because the 
considered functions are generating functions for the Gegenbauer polynomials 
Ck ~', these results can be obtained in a more straightforward way by expressing 
the Ck(COSco ) by the well-known Fourier expansion [31, 32] in terms of cos(/co). 
Moreover, this makes it possible to derive expansions in terms of cos(/co) for all 
functions considered in the present article. 

So far expansion theorems for scalar functions have been dealt with. The 
only non-scalar function considered was (rcos0) N, which is no longer invariant 
under rotations of the coordinate system. The results presented allow the derivation 
of addition theorems of further non-scalar functions, which will be given in 
subsequent notes. 

Acknowledgments. We thank Professors B. C. Carlson and K. Ruedenberg for comments to the 
manuscripts of parts I, II, and III. 

Note Added in Proof. Some research workers elaborated general expressions for Barnett- 
Coulson's zeta function in order to evaluate molecular integrals. Christoffersen and Ruedenberg 
[33] arrived at explicit expressions for zeta functions in terms of powers, exponentials, and 
modified Bessel functions of the first kind using very intricate numerical coefficients. In unpublished 
work Power and Pitzer [34] used general formulas for computing ~N,~ in terms of modified Bessel 
functions, I and K. 

It may be advantageous that the explicit expansion for ~N,t as given by Eq. (4.4) contains 
only products of modified Bessel functions I and K of equal order. Therefore, the zeta function 
may be expressed as a finite combination of Barnett and Coulson's functions 7,(fi;r,R)= 
I,+(1/z)(flr< ) K,+(1/2)(flr>). General formulas for the translation of non-scalar Slater-type orbitals 
[35], which also yield closed-form expressions for Harris and Michels' V-function [28], will be 
given in forthcoming articles. 
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